Chapter 16: Generic Prcgramming with Templates 601

invokes function template max () first time. the compiler creates max () which handles integer data.
Futre invocation such as,

i =max(j, k)i // i, j, and k are integers
accesses the function created at the first call since, the data type parameters J and k is the same as that
of the first call. However, if 3 and k are other than integers, it creates a new function internally and
makes acall toit.

Function and Function Template

Function templates are not suitable for handling all data types, and hence, it is necessary to override
function templates by using normal functions for specific data types. When a statement such as

max{ strl, str2)

is executed, it will not produce the desired result. The above call compares memory addresses of strings
instead of their contents. The logic for comparing strings is different from comparing integer or floating-
point data type. It requires the function having the definition:

char * max(char * a, char * b)

{ .
return(strcmp(a, b) > 0 ? a : b};

}
If the program has both the function and function template with the same name, first, the compiler
selects the normal function, if it matches with the requested data type, otherwise, it creates a function
using a function template. This is illustrated in the program max2 . cpp.

// max2.cpp: maximum of standard and derived data type items
#include <iostream.h>

#include <string.h>

template <class T>

T max{(T a, T b)

{
if(a > b))
return a;
else
return b;
}

// specifically for string data types
char * max(char *a, char *b)
{

if(stremp(a, b) > 0}

return a;
else
return b;
} N
void main ()
{

// max with character data types

char ch, chl, ch2;

cout << "Enter two characters <chl, ch2>: *;
cin >> chl >> ch2;

ch = max(chl, ch2);

cout << *"max{ chl, ch2 }: " << ch << endl;

602 Mastering C++

// max with integer data types

int a, b, c¢;

cout << "Enter two integers <a, b>: ";

cin >> a >> b;

c =max(a, b);

cout << "max(a, b): " << ¢ << endl;

// max with string data types

char strl1{20), str2(207];

cout << "Enter two strings <strl, str2>: “;
cin >> strl >> str2;

cout << "max(strl, str2): " << max(strl, str2
}
Run
Enter two characters <chl, ch2>: A 2
max(chl, ch2): 2

Enter two integers <a, b>: 5 6

max{ a, b): 6

Enter two strings <strl, str2>: Tejaswi Rajkumar
max{ strl, str2): Tejaswi

In main (), the statement

cout << "max(strl, str2): " << max(strl, str2);

has the expression,

max(strl, str2)

The compiler selccts the user-defined normal function instead of creating a new function, since the

function call is matching with the user-defined function.

Bubble Sort Function Template

Sorting is the most commonly used operation particularly in data processing applications. These appli-
cations require function to sort data elements of different data types. Such functions can be declared as
function template and can be used to sort data items of any type. The program bsort . cpp illustrates
the declaration of function template for bubble sort and its use on integer and floating point data types.

// bsort.cpp: template functions for bubble-sort
#include <iostream.h>

enum boolean { false, true };

template <class T>

veid swap(T & x, T & vy) // by reference

{

X;

e B |
I

=Y
t;

}

template< class T >

void BubbleSort(T & SortDhata, int Size)

.
¢

boolean swapped = true;

)

t; // template type temporary variable used in swapping

}

Chapter 16: Generic Programming with Templates

for(int i = 0; (i < Size - 17) && swapped; i++)
{
swapped = false;
for(int j = 0; j < (Size - 1) - i; j++)
if(SortDatal j] > SortDatal j + 1])
{
swapped = true;
swap (SortDatal j 1, SortDataf 3+ 11);
}
}

void main(void)

{

int IntNums[25];
float FloatNums{25];
int i, size;
cout << "Program to sort elements..." << endl;
// Integer numbers sorting
cout << "Enter the size of the integer vector <max-25>: ";
cin >> size;
cout << "Enter the elements of the integer vector..." << endl;
for(i = 0; i < size; i++)
cin >> IntNums[i];
BubbleSort(IntNums, size);
cout << "Sorted Vector:" << endl;
for(i = 0; i < size; i++)
cout << IntNums[i] << " ";
// Floating point numbers sorting
cout << "\nEnter the size of the float vector <max-25>: ";
cin >> size;
cout << "Enter the elements of the float vector..." << endl;
for(i = 0; i < size; i++)
cin >> FloatNums([i];
BubbleSort (FloatNums, size);
cout << "Sorted Vector:" << endl;
for(i = 0; i < size; i++)
cout << FloatNums[i] << * *;

)
Run

Program to sort elements...

Enter the size of the integer vector <max-25>:

o>

Enter the elements of the integer vector...

oy = > joo

Sorted Vector:
1 4 6 8
Enter the size of the float vector <max-25>: 3

603

604 Mastering C++

Enter the elements of the float vector. ..
8.5

3.2

8.9

Sorted Vector:

3.2 8.5 8.9

In main (), when the compiler encounters the statement

BubbleSort(IntNums, size);
it creates the bubble sort function internally for sorting integer numbers; the parameter IntNums is of
type integer. Similarly; when the compiler encounters the statement

BubbleSort(FloatNums, size);
it creates bubble sort function internally for sorting floating point numbers. The same template function
can be used to sort any other data types. Note that the compiler creates a function internally for a
particular data type only once and if there are more requests with the same data type, the compiler
accesses the old internally created function.

Usage of Template Arguments

Every template-argument specified in the template-argument-list must be used as a generic data type for
the definition of the formal parameters. If any of the generic data type is not used in the definition of
formal parameters, such function templates are treated as invalid templates. The use of partial number of
generic data types in a function defining formal parameters is also treated as an error. All the formal
parameters need not be of generic type. The following sections show some function templates which
are invalid declarations:

1. No-argument template function
template < class T >
T pop(void) // error: T is not used as an argument
{

return *--Stack;
}
2. Template-type argument unused
template < class T >
void test(int x) // error: T is not used as an argument
{
T temp;
// .. test stuff
}
3. Usage of Partial number of template arguments

template< class T, class U >

void insert(T & x) // error: U is not used in the argument
A

U 1Ptr;

// .. test stuff

)
The template argur *nt U is not used in argument types, and hence, the compiler reports an error.

Chapter 16: Generic Programming with Templates 605

16.3 Overloaded Function Templates

The functions templates can also be overloaded with multiple declarations. It may be overloaded either
by (other) functions of its name or by (other) template functions of the same name. Similar to overload-
ing of normal functions, overloaded functions must differ either in terms of number of parameters or
their type. The program tprint.cpp illustrates the overloading of function templates:

/ / tprint.cpp: overloaded template functions
#include <iostream.h>
template <class T>
void print(T data) // single template argument

cout << data << endl;
}
template <class T>
void print(T data, int nTimes) // template and standard argument
(

for(int i = 0; i < nTimes; i++)

cout << data << endl;

}
void main()
{
" print(1 };

print(1.5);

print(520, 2 };

print("OOP is Great*, 3); e
}

Run

1

1.5

520

520

OOP is Great
OOP is Great
OOP is Great

In the above program, the templates

v

void print(T data) // single template argument

void print(T data, int nTimes) // template and standard argument
overload the function template print (), but each one of these functions is distinguishable by the
number of arguments and the type of the arguments. In main (), the statements

print(1);

print(1.5);
access the one-argument function template whereas, the statements

print(520, 2);

print("OOP is Great"”, 3);
access the two argument function template. Note that in these statements, the required function is
selected based on the number of arguments supplied at the point of call.

606 Mastering C++

The compiler adopts the following rules for selecting a suitable template when the program has
overloaded function templates.)

[1] Look for an exact match on functions; if found, call it.

{2] Look for a function template from which a function that can be called with an exact match can be
generated; if found, call it.

[3] Try ordinary overloading resolution for the functions; if found, call it.

If no match is found in all the three alternatives, then that call is treated as an error. In each case if
there is more than one alternative in the first step that finds a match, the call is ambi guous and is an error.

A match on a template (step [2]) implies that a specific template function with arguments that exactly
matches the types of the arguments Wwill be generated. In this case, not even trivial type-conversion is
applied while matching a call to a function template.

16.4 Nesting of Function Calls

Recursively designed algorithms will have nested calls to themselves. Their implementation in the form
of function templates will also have recursive calls (calls to itself). The binary search can be imple-
mented by using recursion. It searches for an item in a list of ordered data by applying the divide and
conquer strategy. The program bsearch. cpp illustrates the template based implementation of recur-
sive binary search algorithm.

// bsearch.cpp: binary search function template
#include <iostream.h>
enum boolean { false, true };
// recursive binary search
template <class T>
int RecBinSearch(T Datal], T SrchElem, int low, int high)
{
if(low > high)
return -1;
int mid = (low + high) / 2;
if(SrchElem < Data[mid])
return RecBinSearch(Data, SrchElem, low, mid - 1);
else
if(SrchElem > Data[mid])
return RecBinSearch(Data, SrchElem, mid + 1, high);
return mid;
}
void main(void)
{
int elem, size, num([25}, index;
cout<< "Program to search integer elements..." << endl;
cout << "How many elements ? ";
cin >> size;
cout<<"Enter the elements in aécending order for binary search..."<<endl;
for(int i = 0;1i < size; i++)
cin >> num{i];
cout << "Enter the element to be searched: *;

Chapter 16: Generic Programming with Templates 607

cin >> elem;
if((index = RecBinSearch(num, elem, 0, size)}) == -1)
cout << "Element " << elem << " not found" << endl;
else
cout << "Element " << elem << " found at position " << index:

}

Run

Program to search integer elements. ..

How many elements ? 4

Enter the elements in ascending order for binary search. ..

o o k> =

Enter the element to be searched: &
Element 6 found at position 2

Inmain (), when the compiler encounters the expression,
RecBinSearch(num, elem, 0, size)

it creates the search function internally. The function RecBinSearch () has recursive calls to itself.
In this case, the compiler will not create a new function instead, it uses the internally created function.

16.5 Multiple Arguments Function Template

So far, all the function templates dealt with a single generic argument. Declaration of a function template
for functions having multiple parameters of different types requires multiple generic arguments. The
programmultiple.cpp illustrates the need for multiple template arguments.

// multiple.cpp use of multiple template arguments

struct A

{
int X;
int y;

}i

struct B

{
int x;
double y;

}i

template < class T >
void Assign_ A(T a, Tb, A & S1)
{
Sl.x = a;
Sl.y = b;
}
template < class T >
void Assign_B{ T a, T b, B & S2)
{

S2.x = a;

608 Mastering C++

S2.y = b;
}
void main(void)
{
A Ss1;
B S2;
Assign_A(3, 4, S1);
Assign_B(3, 3.1415, S2);//Error: no match for Assign_B(int,double,B) "

)

In main (), the statement
Assign_B(3, 3.1415, 82);
leads to compilation errors, since the above program is neither having the normal function nor function
template matching with its parameters data types. Both the templates expect the first two parameters to
be of the same data-type and none of them matches the above call. The solution to the problem
encountered in the above program is to declare the second template function in the above program as
follows:
template < class T, class U >
void Assign_B(T a, Ub, B & S2)
{
S2.x = a;
S2.y = b;
}

The declaration of the function template is the same, except that it has an extra argument in the
template-argument-list, i.e., class U. This declaration informs the compiler that the template function
Assign_B() with two arguments should be instantiated. The compiler calls the appropriate
instantiation. Any number of generic data types can be declared, provided all these generic data types
are used in declaring formal parameters. The function Assign_a can also be declared as follows:

template< class T, class U >
void Assign_A(T a, Ub, A & S2)
{
Sl.x = a;
Sl.y = b;
}
Since the dummy arguments T and U are same in the function call Assign_A, it would be better to
define the function template with a single dummy argument rather than two dummy arguments.

All template arguments for a function template must be of template type-arguments, otherwise, it
leads to an error. For instance, the following declaration,

template< class T, unsigned SIZE >
void BubbleSort(T & Data, unsigned SIZE)
{
/1.
1/,
}
is not allowed. However, such declarations are allowed with class templates.

Chapter 16: Generic Programming with Templates 609

16.6 User Defined Template Arguments

In addition to primitive data-types, user defined types can be passed to function templates. Its declara-
tion is same as the function template processing standard data types as illustrated in the program
student.cpp.

// student.cpp: student record and template with user defined data types
#include <iostream.h>
struct stuRec
{
char name{30];
int age;
char collegeCode;
¥i
template <class T>
void Display(T& t)
{

cout << t << endl;

}
ostream& operator << (ostream & out, stuRec & s)
{
out << "Name: " << s.name << endl;
out << "Age : " << s.age << endl;
out << "College Code: " << s.collegeCode << endl;
return out;
}

void main(void)
{

stuRec sl;

cout << "Fnter student record details..." << endl;
cout << "Name: "; cin >> sl.name;

cout << "Age : "; cin >> sl.age;

cout << "College Code: "; cin >> sl.collegeCode;
cout << "The student record:" << endl;

cout << "Name: "; Display(sl.name);

cout << “Age : *; Display(sl.age);
cout << "College Code: ";
Display(sl.collegeCode); // it in turn calls operator << defined above
cout << "The student record:" << endl;
Display(sl };
}

Run

Enter student record details...
Name: Chinamma

Age : 18

College Code: A

The student record:

Name: Chinamma

Age : 18

610 Mastering C++

College Code: A
The student record:
Name: Chinamma
Age : 18
College Code: A
In main (), the statement
Display(sl);
accesses the function template; the statement
cout << t << endl;
in Display () invokes the overloaded operator function,

ostream& onerator << (ostream & out,

StuRec & s

In the cout statement, when the compiler encounters the user defined data item, it searches for the

overloaded stream operator function and makes a call to it.

16.7 Class Templates

Similar to functions, classes can also be declared to operate on different data types. Such classes are
called class templates. A class template specifies how individual classes can be constructed similar to
normal class specification. These classes model a generic class which support similar operations for
different data types. A generic stack class can be created, which can be used for storing data of type
integer, real, double, etc. Consider an example of a stack (modeling last-in-first-out data structure) to
illustrate the need and benefits of class templates. The class declaration for stacks of type character,

integer, and double would be as follows:
class CharStack

{

char array[25]; // declare a stack of 25 characters

unsigned int top;
public:
CharStack() ;

void Push(const char & element);

char Pop(void);

unsigned int GetSize(void) const;

Y
class IntStack
{

int array({25]; // declare a stack of 25 integers

unsigned int top;

public:
IntStack();
void Push(const int & element);
int Pop{ void);

unsigned int GetSize(void) const;

};
class DbleStack
{

double array(25]; // declare a stack of 25 double

unsigned int top;

Chapter 16: Generic Programming with Templates 611

public:

DbleStack();

void Push(const double & element);

double Pop(void);

unsigned int GetSize(void) const;

Yi
As seen in the above three declarations, a separate stack class is required for each and every data

type. Template declaration enables substitution of code for all the three declarations of stacks with

a single template class as follows:

template < class T >
class DataStack
{

T array[25]; // declare a stack of 25 elements of data type T
unsigned int top;
public:

DataStack();
void Push(const T & element);
T Pop(void);
unsigned int GetSize(void) const;
Yi
The syntax of declaring class templates and defining objects using the same is shown in Figure 16.2.
The definition-of a class template implies defining template data and member functions.

template datatypes T1, T2,...

keyword

template <class T1l, class T2, ...>
class ClassName

{

// data items of template type T1l, T2,
T1 datal;

// functions of template arguments T1, T2,
void funcl (T1 a, T2 &b);

T func2 (T2 *x, T2 *y);

Figure 16.2: Syntax of class template declaration

The prefix template <class T> specifies that a template is being declared, and that a type-name
T will be used in the declaration. In other words, DataStack isa parameterized class with T as its

generic data type.

Any call to the template functions and classes, needs to be associated with a data type or a class.
The compiler then instantiates a copy of the template function or template class for the data type
specified. The syntax for creating objects using the class templates is shown in Figure 16.3.

A statement to create an object of type stack that can hold integers is as follows:

DataStack <int> stack_int; // stack of integers

612 Mastering C++

datatype to be substituted
for template datatype

I

ClassName <char> objectl;
ClassName <int> object2;

ClassName <some_other_class> object5;
Figure 16.3: Syntax for class template instantiation

Similarly, objects those hold characters, floats, and doubles can be created by the following statements:
DataStack <char> stack_char; // stack of characters
DataStack <float> stack_float; // stack of floats
DataStack <double> stack_double; // stack of doubles
However, the usage of these stack objects is similar to those of normal objects. For instance, to push the
integer value 10 into the stack_int object, the following statement is used:
stack_int.push(10);

Template Arguments
A template can have character strings, function names, and constant expressions in addition to tem-
plate type arguments. Consider the following class template to illustrate, how the compiler handles the
creation of objects using class templates:

template <class T, int size>

class myclass
{
T arr([size]l;

}i
The value supplied for a non template type argument must be a constant expression; its value must be
known at compile time. When the objects of the class template are created using a statement such as

myclass <float, 10> newl;
the compiler creates the following class:

class myclass

{
float arr{10];

}i
Again if a statement such as,
myclass <int, 5> new2;
is encountered for creating the object new2, the compiler creates the following class:

class myclass
{ .
int arr([5];
}i

Member Function Templates
A member function of a template class is implicitly treated as a template function and it can have

Chapter 16: Generic Programming with Templates 613

template arguments which are the same as its class template arguments. For instance, the class templau:
DataStack has the member function,

void Push(

const T &element);

The parameter element is of type template-argument. Its syntax when defined outside is as follows:

template <class T>
void DataStack <T>::Push(const T &element);

The syntax for declaring member functions of a template class outside its body is shown in Figure 16.4.

template <class T1l, ...>
class BaseClass
{
// template type data and functions
void funcl(T1l a);
Y
template <class T1, ...>
void ClassName <T1,...>::funcl(Tl a)
«
// function template body
Y

Figure 16.4: Syntax for declaring member function

of class template outside its body

The program vectoxr.cpp illustrates the declaration of the vector class and its usage in
defining its objects. It has a data member whichis a pointer to an array of type T. The type T can be int,

f1loat, etc., depending on the type of the object created.

/ / vector.cpp: parametrized vector class
#include <iostream.h>

template <class T>

class vector

{

T * v;

// changes to int *v, float *v, ., etc
int size; // size of vector v
public:
vector(int vector_size)
{

size = vector_size;

v = new T[vector_size]; // v = new int[size 1,
}
~vector ()
{
delete v;
}

T & elem(int i)
{
if(i >= size)
cout << endl <<
return viil;

"Error: Out of Range";

}
void show();
ri

614 Mastering C++

template <class T>
void vector<T>: :show()
{
for(int i = 0; i < size; i++)
cout << elem(i) << ", ";
}

void main{()
int 1i;
vector <int> int_vect(5);
vector <float> float_vect(4);

for(i = 0; 1 < 5; i++)
int_vect.elem(i) = { + 1;
for(i = 0; i < 4; i++)
float_vect.elem(i) = float(i + 1.5);

cout << "Integer Vector: ";
int_vect.show() ;

cout << endl << "Floating Vector: ";
float_vect.show();

}

Run
Integer Vector: 1

2,3, 4,5
Floating Vector: 1.

2 ‘
5, 2.5, 3.5, 4.5,
Note that the class template specification is very much similar to the ordinary class specification

except for the prefix,

template <class T>
and the use of T in the place of data-type. This prefix informs the compiler that the class declaration
following it is a template and uses T as a type name in the declaration. The type T may be substituted
by any data type including the user defined types. In main (), the statement,

vector <int> int_vect(5);

vector <float> float_vect(4);
creates the vecior objects int_vect and float_vect to hold vectors of type integer and floating
point respectively. Once objects of class template are created, the use of those objects is the same as the
non-template class objects.

Class Template with Multiple Arguments
The template class is instantiated by specifying predefined data type or user defined data classes. The
data type is specified in angular braces <>. The syntax for instantiating class template is as follows:
TemplateClassName < type > instance;
TemplateClassName < typel, type2 > instance(arguments);
The instantiation specifies the objects of specified data type. If a different data type is to be specified,
a new declaration statement must be used.

The declaration of template classes with multiple arguments is similar to the function template with
multiple arguments. However, the arguments need not be of template type. These may include character
strings, addresses of objects and functions with external linkage, static class members, and constant
expressions. Consider the following declaration:

Chapter 16: Generic Programming with Tempiates 615

template < class T, unsigned SIZE >
class StackN
{
protected:
T Array[SIZE];
unsigned int top;

public:
Stack20() { top = 0; }
void Push(const T & elem) { Array[top++] = elem; }

T pop(void) { return Array[--top }; }

int GetSize(void) const { return top+l; }

T & GetTop(void) { return Array[topl; }
Yi

The declaration of the class template StackN is preceded by,

template < class T, unsigned SIZE >
as before, except that it has two arguments. The second argument is an (typed) unsigned argument.
Making SIZE an argument of the template class StackN rather than to its objects, infers that the sizes
of class StackN is known at compile time so that class StackN can be fully declared at compile time.
The class template StackN with a variable stack size can be instantiated by specifying the size in the
argument list. This makes a template, such as StackN, useful for implementing general purpose data
structure. The above declarations provide the user freedom to define many instances of the class
StacknN, each operating on different data-types and of variable size. The following statements define
objects of the class template StackN for storing integers and characters respectively.

StackN < int, 20> Intstk;

StackN < char, 50 > Chrstk;
A known type argument in the template class (second argument in the above case) must be a constant
expression (evaluated at the compile time) of the appropriate type.

The list allows insertion operation at the front and deletion operation at the end of a list. The list
class can have any number of template data elements, as shown in the following declaration.

template< class R, class S, class T >
class SnglList
{
private:
R data_l;
S data_2;
T data_3;
public:
SnglList< R, S, T > *next;
snglList(void) { next = NULL; }
friend ostream & operator<<(ostream &, SnglList< R, S, T > & };
friend istream & operator>>(istream &, SnglList< R, S, T > &);

}:
The objects of class templates having multiple arguments can be created as follows:

snglList <int, float, double> node;
SnglList < int, unsigned, double > *Root, *End;

616 MaStering C++

16.8 Inheritance of Class Template

A combination of templates and inheritance can be used in developing hierarchal data structures such
as container classes. A base class in a hierarchy represents a commonality of methods and properties.
Use of templates with respect to inheritance involves the following:

« Derive a class template from a base class, which is a template class.

+ Derive aclass template from the base class, which is a template class, add more template members in
the derived class.

+ Derive a class from a base class which is not a template, and add template members to that class.

« Derive a class from a base class which is a template class and restrict the template feature, so that the
derived class and its derivatives do not have the template feature. -

The template features provided.in the base classes, can be restricted by specifying the type, when
the class is derived. All the arguments in the template argument list of the base class have to be replaced
by predefined types. In such a case, the derived class does not inherit the template feature, but is just
a class of specified data type stated at the point of inheritance declaration. The syntax for declaring
derived classes from template-based base classes is shown in Figure 16.5.

template <class T1, ...>

class BaseClass

{

// template type data and functions
Y i

datatype for template
in base class

template <class T1, ...> \//
class DerivedClass : public BaseClass <T1l, ...>
{

// template type data and functions
}i

Figure 16.5: Syntax for inheriting template base class

The class deriving a template type base class can be a normal class or a class-template. If a new
derived class is a normal class, the data-type of template arguments to the base class must be specified
at the point of derivation. Otherwise, template arguments type specified at the point of instantiation of
a class template can also be passed.

Consider an example of declaring the template class Vector. It inherits all the properties from the
base template class svector. The derived template class Vector is still a static vector containing
twenty elements. Member functions that perform insert, delete and search are added to the derived
class. The member functions have the prefix <template class T>, since the derived class oper-
ates on the undeclared type T. The specification of a new template class created by inheriting another
template-based base class is given below:

template< class T >

class Vector : public sVector< T >
{

read () ;

Chapter 16: Generic Programming with Templates 617

Y

The member functions defined with its class body have the same syntax as members of non-template-
type classes. However. member function defined outside the body of a class, for instance, has the
following specification:

cemplate <class T>

void Vector<T>::read(}

{

./ body of the read()

)
Note that, the member functions of a class-template are treated as function-template type members. The
class Vector can be instantiated as follows:

Vector <int> vl;
In this case. the int specified in angular bracket is first assigned to generic data type in the Vector
class and then the same is also passed to its base class.

A derived class of a template based base class is not necessarily template derived class. Thatis. the
non-template-based derived classes can also be created from the template-based base classes. In this
case. the undefined template argument T has 1o be specified during derivation, for instance, as follows:

class Vector : public sVector< int >

{
Yi
It creates a new class called Vector from the template-based base class sVector. The int is passed
as template argument type to the base class.

The program union. cpp illustrates the mechanism of extending the class template Bag by using
the feature of inkeritance. In this case, a new class template Set is derived from the existing class
template Bag without any modifications. A derived class template Set inherits all the properties of the
class template Bag and extends itself by adding some more features of its own to support sct assign-
ment and union operation.

// union.cpp: Union of sets. Set class by inheritance of Bag class

#include <iostream.h> '

enum boolean { FALSE, TRUE Y

const int MAX_ITEMS = 25; // Maximum number of items that the bag can hold

template <class T>
class Bag

{
protected: // Note: not private
T contents[MAX_ITEMS]; // bag memory area
int ItemCount; // Number of items present in the bag
public:
Bag () // no-argument constructar
(
ItemCount = 0; // wWhen you purchase a bag, it will be empty

618 Mastering C++

void put(T item) // puts item into bag
{
contents[ItemCount++] = item; // item into bag, counter update
}
boolean ISEmpty () // 1, if bag is empty, 0, otherwise
I
return ItemCount == 0 ? TRUE : FALSE;
}
boolean IsFull() // 1, 1f bag is full, 0, otherwise

{
return ItemCount == MAX_ITEMS ? TRUE : FALSE;

}
boolean IsExist(T item);
void show();
}i
// returns 1, if item is in bag, 0, otherwise
template <class T>
boolean Bag<T>::IsExist(T item)
{
for(int i = 0; i < ItemCount; i++)
if(contents[i] == item)
return TRUE;
return FALSE;
}
// display contents of a bag
template <class T>
void Bag<T>: :show()
{
for(int i = 0; i < ItemCount; i++)
cout << contents|[i] << " *;
cout << endl;
}
template <class S>
class Set: public Bag <S>
(
public:
void add(S element)
{
if(!'IsExist(element) && !'IsFull())
put{ element);
}
void read();
void operator = (Set sl);
friend Set operator + (Set sl, Set s2);
}i)
template <class S>
void Set<S>::read()
{
S element;
while(TRUE)

{

Chapter 16: Generic Programming with Templates 619

cout << "Enter Set Element <@- end>: ";
cin >> element;
if(element == 0)
break;
add(element);

}
template <class S>
void Set<S>::operator = (Set <S> s2)
{
for(int i = 0; i < s2.ItemCount; i++)
contents[i] = s2.contents[i];
ItemCount = s2.ItemCount;
1
template <class S>
Set<S> operator + (Set <S> sl, Set <S> s2)
{
Set <S> temp;
temp = sl; // copy all elements of set sl to temp
// copy those elements of set s2 into temp, those not exist in set sl
for(int i = 0; i < s2.ItemCount; i++)
{
if(!sl.IsExist(s2.contents[i])) // if element of s2 is not in sl
temp.add(s2.contents[il]); // copy the unigque element
}
return{(temp);
}
void main()
{
Set <int> sl;
Set <int> s2;
Set <int> s3;

cout << "Enter Set 1 elements .." << endl;
sl.read():
cout << "Enter Set 2 elements .." << endl;
s2.read();

s3 = sl + s2;
cout << endl << "“Union of sl and s2 : ";

s3.show(); // uses Bag::show() base class
}
Run
Enter Set 1 elements
Enter Set Element <0- end>: 1
Enter Set Element <0- end>: 2
Enter Set Element <0- end>: 3
Enter Set Element <0- end>: 4
Enter Set Element <0- end>: 0
Erter Set 2 elements
Enter Set Element <0- end>: 2

620 Mastering C++

Enter Set Element <0- end>:
Enter Set Element <0- end>:
Enter Set Element <0- end>:
Enter Set Element <0- end>:
Union of s1 and s2 : 1 2 345 6

o oy o e

In the above program, the template class Set has its own features to perform set union by using the

member functions of the class Bag. The statement

template <class S>

class Set: public Bag <S>
derives the new template class Set known as derived class from the base class Bag. The base class
Bag is publicly inherited by the derived class Set. Hence, the members of -Bag class, which are
protected remain protected and public remain public, in the derived class Set. The Set class can treat
all the members of the Bag class as they are of its own. The derived class Set refers to the data and
member functions of the base class Bag, while the base class Bag has no access to the derived class
Set.

16.9 Class Template Containership

The usage of delegation (containership) with templates allows to build powerful programming compo-
nents (data structures). It refers to having an object of one class contained in another class as a data
member. The container class (i.e., a class that holds objects of some other type) is of considerable
importance when implementing data structures. Inheritance supports the is-a relationship whereas
containership supports the has-a relationship. The program tree.cpp illustrates the use of
containership in building an unbalanced binary tree. It has two classes TreeNode and BinaryTree.
The first class represents the node structure of a binary tree where as the second class represents the
set of operations which can be performed on a tree. The class TreeNode has two pointers to objects
of its own which serve as the pointers to child nodes. The class BinaryTree has a pointer to the root
node of the tree, which is an instance of the class TreeNode and thus delegating node handling
issues to the TreeNode class.

// tree.cpp: Binary Tree Operations (create, print, traverse, and search)
#include <iostream.h>

#include <stdio.h>

template <class T>

class TreeNode

{

protected:
T data; /* data to be stored in a tree */
TreeNode <T> *left; /* pointer to a left sub tree */
TreeNode <T> *right; /* pointer to a right sub tree */
public:

TreeNode(const T& dataln)
{

data
left

dataln;
right = NULL;

Chapter 16: Generic Programming with Templates 621

TreeNode (const T& dataln, TreeNode <T> *], TreeNode <T> *r)

{

data = dataln;
left = 1;
right = r;

}
friend class BinaryTree <T>;
}:
template <class T>
class BinaryTree
{
protected:
TreeNode<T> *root;
TreeNode<T> *InsertNode(TreeNode <T> *root, T data);
public:
BinaryTree()
{
root = NULL;
}
void PrintTreeTriangle(TreeNode <T> *tree, 1nt level);
void PrintTreeDiagonal(TreeNode <T> *tree, ‘int level);
void PreOrderTraverse(TreeNode <T> *tree)i
void InOrderTraverse(TreeNode <T> *tree)i
void PostOrderTraverse(TreeNode <T> *tree)
TreeNode <T> * SearchTree(TreeNode <T> *tree, T data);
void PreOrder ()
{

PreOrderTraverse(root);

}
void InOrder ()
{
InOrderTraverse(root);
}
void PostOrder ()
{
PostOrderTraverse(root);
}
void PrintTree(int disptype)
{

if(disptype == 1)
PrintTreeTriangle(root, 1};
else
PrintTreeDiagonal (root, 1);
}
void Insert(T data)
{

root = InsertNode(root, data)

622 Mastering C++

TreeNode <T> * Search(T data)
{

return SearchTree(root, data);

}i
// Insert ‘data' into tree

template <class T>
TreeNode<T> * BinaryTree<T>::InsertNode(TreeNode <T> *tree, T data)

{
/* Is Tree NULL */

if(!'tree)

{
tree = new TreeNode<T>(data, NULL, NULL);

return(tree);

}
/* Is data less than the parent element */

if(data < tree->data)
tree->left = InsertNode(tree->left, data);
else
/* Is data greater than the parent element */
if(data > tree->data)
tree->right = InsertNode(tree->right, data);
/* data already exists */
return(tree);
}
// PreOrder Traversal

template <class T>
void BinaryTree<T>: :PreOrderTraverse(TreeNode <T> *tree)

{

if(tree)

{
cout << tree->data << " "; // Process node

PreOrderTraverse(tree->left);
PreOrderTraverse(tree->right);

}
// In Order Traversal

template <class T>
void BinaryTree<T>: ;InOrderTraverse{ TreeNode <T> *tree)

{
if(tree)
{
PostOrderTraverse(tree->left);
cout << tree->data << " "; // Process node

PostOrderTraverse(tree->right);

Chapter 16: Generic Programming with Templates 623

// Post Order Traversal

template <class T>
void BinaryTree<T>::PostOrderTraverse (TreeNode <T> *tree)

{
if(tree)

{
PostOrderTraverse(tree->left);
PostOrderTraverse(tree->right);

cout << tree->data << " "; // Process node

}
}

// Tree Printing in Triangle Form

template <class T>
void BinaryTree<T>::PrintTreeTriangle(TreeNode <T> *tree, int level)

{
if(tree)

{

PrintTreeTriangle(tree->right, level+l);

cout << "\n";

for(int i = 0;
cout << " "

cout << tree->data;

PrintTreeTriangle(tree->left, level+l);

}

i < level; i++)

}
// Tree Printing in Diagonal Form

template <class T>
void BinaryTree<T>: :PrintTreeDiagonal (TreeNode <T> *tree, int level)

{
if(tree)

{
cout << "\n";
for(int i = 0; i < level; i++)
cout << " "

cout << tree->data;

PrintTreeDiagonal (tree->left, level+l);

PrintTreeDiagonal(tree->right, level+l);

}

}
// search for data item in the tree

template <class T>
TreeNode <T> * BinaryTree<T>::SearchTree (TreeNode <T> *tree, T data)

{

while(tree)

{
/* Is data less than the parent element */

if(data < tree->data)
tree = tree->left;

else

64 Mastering C++

/* Is data greater than the parent element */
if(data > tree->data)
tree = tree->right;
else
return(tree);
}
return(NULL);
}

void main()

{
float data, disptype;
BinaryTree <float> btree; // tree's root node
cout << "This Program Demonstrates the Binary Tree Operations" << endl;
cout << "Tree Display Style: [1l] - Triangular [2] - Diagonal form: *;
cin >> disptype;
cout << "Tree creation process..." << endl;
while(1)
{
cout << "Enter node number to be inserted <0-END>: *;
cin >> data;
if(data == 0)
break;
btree.Insert(data);
cout << "Binary Tree is...";
btree.PrintTree(disptype);
cout << "\n Pre-Order Traversal: ";
btree.PreOrder () ;
cout << "\n In-Order Traversal: ";
btree.InOrder () ;
cout << "\nPost-Order Traversal: ";
btree.PostOrder() ;
cout << endl;
}
cout << "Tree search process...' << endl;
while(1)
{
cout << "Enter node number to be searched <0-END>: *;
cin >> data;
if(data == 0)
break;
if(btree.Search(data))
cout << "Found data in the Tree" << endl;
else
cout << “Not found data in the Tree" << endl;
}
}
Run

This Program Demonstrates the Binary Tree Operations
Tree Display Style: (1] - Triangular [2] - Diagonal form:

[

Tree creation process...
Enter node number to be
Binary Tree is...
5

Pre-Order Traversal:

In-Order Traversal:
post -Order Traversal:
inter node number to be
3inary Tree 1s...

=

v ;o

3
Pre-Order Traversal:
In-Order Traversal:
Post-Order Traversal:
Enter node number to be
Binary Tree is...
8

w W u

5
3
Pre-Order Traversal:
In-Order Traversal:
Post-Order Traversal:
Enter node number to be
Binary Tree is...
8

w wu

2
Pre-Order Traversal:
In-Order Traversal:
Post-Order Traversal:
Enter node number to be
Binary Tree is...
9

[NS RS I

2

Pre-Order Traversal: 5

In-Order Traversal: 2
Post-Order Traversal: 2
Enter node number to be
Tree search process...
Enter node number to be
Found data in the Tree
Enter node number to be

Chapter 16: Generic Programming with Templates

inserted <0-END>:

inserted <0-END>:

3
5
5
inserted <0-END>:

38
58
85

inserted <0-END>:

328
358
385
inserted <0-END>:

3289
3598
3985
inserted <0-END>:
searched <0-END>:

searched <0-END>:

Not found data in the Tree

Enter node number to be

searched <0-END>:

lon

jw

o lo

[l

625

626 Mastering C++

16.10 Class Template with Overloaded Operators

The class template can also be declared for a class having operator overloaded member functions . The
syntax for declaring operator overloaded functions is the same as class template members and over-
loaded functions. The class template with operator overloading will allow to truly extend the language
and at the same time retaining the readability of object manipulation code. The program complex . cpp
illustrates the overloading of the + operator in the class template complex. In this case, the members
of the complex number (real and imaginary) can be any of the standard data types.

// complex.cpp: template class for operator overloaded complex class
#include <iostream.h>

template <class T>

class complex

{

private: .

T real; // real part of complex number

T imag; // imaginary part of complex number
public:

complex () // no argument constructor

{
real = imag = 0.0;
}
void getdata() // read complex number
{
cout << "Real Part ? “;
cin >> real;
cout << "Imag Part ? ";
cin >> imag;

}
complex operator + (complex c2); // complex addition
void outdata(char *msg) // display complex number
{
cout << msg << " (" << real;
cout << ", " << imag << ")" << endl;

};
template <class T>
complex <T> complex<T>::operator + (complex <T>c2)

{

complex <T> temp; // object temp of complex class
temp.real = real + c2.real; // add real parts

temp.imag = imag + cZ.imag; // add imaginary parts

return(temp); // return complex object

}

void main()

{
complex <int> cl, c2, c3; // integer complex objects
cout << "Addition of integer complex objects..." << endl;
cout << "Enter complex number cl .." << endl;
cl.getdata();

Chapter 16: Generic Programming with Templates 627

cout << "Enter complex number c2 .." << endl;
c2.getdata();

c3 = cl + c2; // integer addition

c3.outdata("c3 = cl + c2: "); // display result
complex <float> c4, c5, c6; // integer complex objects
cout << "Addition of float complex objects..." << endl;
cout << "Enter complex number c4 .." << endl;
c4.getdatal);

cout << "Enter complex number ¢5 .." << endl;

cS.getdata();

c6 = c4 + ¢c5; // floating addition

c6.outdata("c6 = c4 + cb: ")i // display result
}

Bun

Addition of integer complex objects. ..
Enter complex number cl ..

Real Part ? 1

Imag Part ? 2

Enter complex number c2 ..

Real Part ? 3

Imag Part ? 4

c3 =cl + c2: (4, 6)

Addition of float complex objects...
Enter complex number c4 ..

Real Part ? 1.5

Imag Part ? 2.5

Enter complex number c5 ..

Real Part ? 2.4

Imag Part ? 3.7

c6 = c4 + c5: (3.9, 6.2)

In main (), the statements

complex <int> cl, c2, c3; // integer complex objects
complex <float> c4, c5, cb6; // integer complex objects

when encountered by the compiler, it creates two complex classes internally for handling numbers with
integer and real data type members and instances of those classes. The statement
c3 = cl + c2; // integer addition
performs integer operation on complex objects, and the statement
c6 = c4 + c5; // floating addition
performs floating-point operation on complex objects.

Review Questions

16.1 What is generic programming ? What are its advantages and state some of its applications ?

16.2 Whatis a function template ? Write a function template for finding the largest number in a given
array. The array parameter must be of generic-data types.

16.3 Explain how the compiler processes calls to a furction template.

16.4 State whether the following statements are TRUF or FALSE. Give reasons.

628

16.5
16.6
16.7
16.8

16.9

16.10

16.11

16.12

Mastering C++

(a) generic-data type is known at runtime.
(b) function templates requires more memory space than normal function.
(c) templates are processed by the compiler.
(d) Special mechanism is required to execute function templates.
(e) The compiler reports an error if any one of the generic data-type indicated in template-type
list is unused for defining formal parameters.
(f) A derived class of a template-based base class is not necessarily template derived class.
(g) Overloaded operator fuictions can be function templates.
(h) The syntax for defining objects of a class template is slightly different from the definition of
the normal class's objects.
(1) Parameters to constructors can be of template type.
What is a class template ? Explain the syntax of a class template with suitable examples.
Explain how the compiler processes calls to a class template ?
Explain the syntax for inheriting template-based superclass. Note that the derived class can
again be a template-based or non-template-based. lustrate with suitable programming examples.
Write a template-based program for adding objects of the Vector class. Use dynamic data
members instead of arrays for storing vector elements.
Write a program for manipulating linked list supporting node operations as follows:
node = node + 2; node = node - 3;
Node <int> *n = nodel + node2;
The first statement creates a new node with node information 2 and the second statement
deletes a node with node information 3. The node class must be of type template.
Write an interactive program for creating doubly linked-list. The program must support ordered
insertion and deletion of a node. The doubly linked-list class must be of template type.
Design template classes such that they support the following statements:
Rupee <float> rl, r2;
Dollar <float> dl, 42;

dl = r2; // converts rupee (Indian currency) to dollar (US currency)
r2 = d2; // converts dollar (US currency) to rupee (Indian currency)
Write a complete program which does such conversions according to the world market value.
Consider an example of book shop which sells books and video tapes.It is modeled by book
and tape classes. These two classes are inherited from the base class called media. The
media class has common data members such as title and publication. The book class
has data members for storing a number of pages in a book and the tape class has the playing
time in a tape. Each class will have member functions such as read () and show (). In base
class, these members have to be defined as virtual functions. Write a program which models this
class hierarchy and processes their objects using pointers to base class only. (Use virtual

functions and all classes must be template-based.)

17

Streams Computation with Console

In general, there are several kinds of streams to form physical entities such as streams of water (rivers),
streams of electrons (electricity), streams of cars (traffic), and streams of characters (message packet).
The notion of streams and streams ¢omputation can be visualized through the illustration of a river. It
may be the Amazon river flowing into the Atlantic ocean as shown in Figure 17.1. Drops of water
collectively form a continuous stream. Streams join to form a river. Looking over the upper river area to
the lower river area, streams converge into one stream so that a tree of streams is formed, whose root
stream goes into the ocean. One drop from one branch stream may reach the ocean a slightly earlier or

later than another in a different branch stream.

Water drops

ueasQ

Figure 17.1: Streams of water drops flowing into ocean

171 What are Streams ?

Every program must go through the process of input-computation-output flow so that it can take some
data as input and generate the processed data as output. It necessitates the need for a mechanism,
which supplies the input data to a program and presents the processed data in the desired form. In the
earlier chapters, the input and output operations were performed using cin and cout with the stream
operators >> and << respectively. Streams handling /O operations are different from ANSI C func-
tions. C++ supports a wide variety of features to control the way data is read and the output is
presented.

C++ uses the concept of streams and stream classes to perform /O operations with console and disk
files. The stream classes supporting console-based input and output operations are discussed in this
chapter and those supporting file-based input and output operations are discussed in the next chapter,
Streams Computation with Files.

630 Mastering C++

C++ streams deal with a sequence of characters and hence, ocean in the above figure can be
visualized as an object or a receiver and each drop of water as a character, flowing into the object.

Streams are classified into input streams and output streams. Streams resemble the producer and
consumer model. The producer produces items to be consumed by the consumer. The producers and
consumers are connected by the C++ operators >> or <<, In C++, the /O system is designed to operate
on a wide variety of devices including console, disks, printer etc. It is designed to provide a consistent
and device independent interface. It allows uniform use of any I/O device—be it a disk, a terminal, or a
printer as shown in Figure 17.2a. The computer resources involved in the stream computation include
display, keyboard, files, printer, etc. The stream is an object flowing from one place to another. For
instance, in nature, a stream normally refers to the flow of water from the hills to the oceans. Similarly, in
C++, astream is used to refer to the flow of data from a particular device to the program’s variables. The
device here refers to files, memory arrays, keyboard, console, and so on. In C++, these streams are
treated as objects to support consistent access interface.

Monitor

Printer @
=
Disk Q
(a) Consistent stream interface with devices
Input stream
t .
Inp.uL extraction
device from input
stream
4
AAAAAAA
AASNAAAA
AAAAAAAA
AAAPAAAN
. insertion
Output stream insert
into output
Output < stream
device M '

(b) Data streams

Figure 17.2: C++ streams

Some of the above devices exhibit the characteristics of either a producer or a consumer and others
exhibit the characteristics of both the producer and consumer depending on the operations performed
on them. For instance, the keyboard exhibits the nature of only a producer; printer or monitor screen

Chapter 17: Steams Computation with Console 631

exhibit the nature of only a consumer. Whereas, a file stored on the disk. can behave as a producer or
consumer depending on the operation initiated on it. The stream model of C++ is shown in Figure 17.2b.

A stream is a series of bytes, which act either as a source from which input data can be extracted or
as a destination to which the output can be sent. The source stream provides data to the program called
the input stream and the destination stream that receives data from the program is called the output
stream.

What are C++ Streams ?

The C language supports an extensive set of library functions for managing I/O operations. Every C
programmer is familiar with printf, scanf, puts, gets, fopen, fwrite, fread, fscanf,
fclose, and related VO functions defined in the header file stdio . h. These functions have served
programmers very well, but they are inadequate and clumsy when used with object-oriented program-
ming. For instance, the user cannot add a new format either for printf or scanf function to handle
the user-defined data type. Further, the stdio . h functions are inconsistent in parameter ordering and
semantics.

In C++, streams with operator overloading provide a mechanism for filtering. The standard stream
operators << and >> do not know anything about the user-defined data types. They can be overloaded
to operate on user-defined data items. Overloaded stream operators filter the user-defined data items
and transfers only basic data items to the standard stream operators. Consider the following statements
to illustrate the streams capability:

cout << complexl;

cin >> complex2;
The data-items complexl and complex2 are the objects of the complex class. The operators >> or
<< do not know anything about the objects complexl and complex2. These are overloaded in the
complex class as member functions, which process the attributes of complex objects as basic data-
items. Collectively, it appears as if the stream operators operate even on objects of the complex class.
This illusion is made pessible because of the feature of overloading the stream operators.

The C++ language offers a mechanism which permits the creation of an extensible and consistent
input-output system in the form of streams library. It is a collection of classes and objects which can be
used to build a powerful system, or modified and extended to handle the user-defined data types. There
are different classes for handling input and output streams, as also for streams connecting different
devices to the program. C++ streams are also treated as filters, since they have capability to change the
data representation from one number system to another when requested.

17.2 Predefined Console Streams

C++ contains several predefined streams that are opened automatically when the execution of a pro-
gram starts. The most prominent predefined streams in C++ are related to the console device. The four
standard streams cin, cout, cerr, and clogare automatically opened before the functionmain ()
is executed; they are closed after main () has completed. These predefined stream objects (are de-
clared in iostream.h) have the following meaning:

cin Standard input (usually keyboard) corresponding to stdin in C.

cout Standard output (usually screen) corresponding to =-dout in C.

632 Mastering C++

cerr Standard error output (usually screen) corresponding to stderr in C.
clog A fully-buffered version of cerr (no C equivalent).

The stream objects cin and cout, have been used extensively in the earlier chapters. It is known
that cin (console input) represents the input stream connected to the standard input device and cout
(console output) represents the output stream connected to the standard output device. The standard
input and output devices normally refer to the keyboard and the monitor respectively. However, if
required, these streams can be redirected to any other devices or files.

Comparison of I/O using C’s stdio.h and C++’s iostream.h

The functions declared in the header file, stdio.h such as printf, scanf, etc., require the use of
format strings. Consider an example of displaying the contents of the integer variable on the console to
illustrate the flexibility offered by the C++ streams. If the variable i were to be defined by the statement
int i; '
then the printf statement to display the value of the variable 1 would be,
printf("%d", i);
and the statement to read data would be,
scanf ("%d", &i);

Consider a situation in which the printf or scanf statement occurs at several places in a
program. Suppose the program specifications are changed, and it is decided that the variable i must
hold larger values, the definition of 1 would be changed to,

long i;
The user is now left with the thankless job of searching for all the statements that read or display the
variable 1 and replacing $d by $1d in the format strings. On the other hand, in C++, the ios tream.h
functions are overloaded to take care of all the basic types. For instance, the statements

cout << i;

cin >> i;
will work correctly without the need for any modification irrespective of the data type of the i variable.
The stream based I/O operations can be performed with variables of all the basic data types such as
char, signed char, short int, long, etc. In addition to these, the << and >> operators are
overloaded to operate on pointers to characters also (for performing input or output with the NULL
terminated strings). The traditional beginner’s C program is usually called "Hello World" and is listed in
the program hello.c.

/* hello.c: printing Hello World message */
#include <stdio.h>
void main()

{
printf("Hello World");

}

Run
Hello World

The standard function printf () is in the C library that sends characters to the standard output
device. The Hello World program will also work in C++, because C++ supports ANSI-C function library.
A new C++ program that does the same operation as C's Hello World is listed in hello. cpp.

Chapter 17: Steams Computation with Console 633

/ / hello.cpp: printing Hello World message
#include <iostream.h>
void main()

{

cout << "Hello World";

}

Run
Hello World

The header file, iostream.h supporis streams programming features by supporting predefined
stream objects. The C++’s stream insertion operator, << sends the message Hello World to the
predefined console object, cout which, in turn, prints on the console.

Output Redirection
The output generated by cout can be redirected to files whereas, that generated by cerr and clog
cannot be redirected. That is, the following on the command line,

shell: hello > outfile
redirects console output to the file named outfile. The output file contains only those messages
generated by cout but not by cerr and c1og. They always redirect to console as illustrated in the
program redirect.cpp.

// redirect.cpp: printing Hello World message
#include <iostream.h>
void main{()

{
cout << "Hello World with cout\n";
cerr << "Hello World with cerri\n";
clog << "Hello World with clog\n”;

}

Run

Hello World with cerr
Hello World with clog

Note: The program is executed by issuing the following command at the shell prompt:
redirect > outfile
On execution, the messages shown at RUN appear on the console whereas the first messageHello
World with cout is stored in the file outfile.

The main advantage of using iostream.h functions over the stdio.h functions is data-inde-
pendence; the freedom to write code without worrying too much about the variable types. Mixed usage
of stdio and the st ream class functions to perform output is not advisable. This is because they use
differe_nt buffers and the order in which the output appears may not conform to the order in which the
output statements appear in the program.

Features of cin and cout

“Before examining the facilities available with cout and cin, it is useful to know that the objects cin
and cout are instances of certain classgs defined in iostream. h. The object cout is an instance of

634 Mastering C++

class ostream_withassign, which is derived from the superclass ostream. Hence, effectively
cout has the functionality of the class ostream. Similarly, cin an instance of the class
istream with_assign has the functionality of the class istream.

17.3 Hierarchy of Console Stream Classes

The C++ input-output system supports a hierarchy of classes that are used to manipulate both the
console and disk files, called stream classes. The stream classes are implemented in a rather elaborate
hierarchy. The knowledge of C++’s input and output stream class hierarchy will result in the potential
utilization of stream classes. Figure 17.3, depicts hierarchy of classes, which are used with the console
device.

»| streambuf *bp =

ios
& strstreambase: :buf
pointer
istream streambuf ostream
input T T output
iostream
istream_withassign iostream_withassign ostream_withassign

Figure 17.3: Hierarchy of console stream classes

The iostream facility of C++ provides an easy means to perform I/O. The class istream uses
the predefined stream c in that can be used to read data from the standard input device. The extraction
operator >>, is used to get data from a stream. The insertion operator <<, is used to output data into a
stream. A stream object must appear on the left side of the << or >> operator; however, multiple stream
operators can be concatenated on a single line, even when they refer to objects of different types. For
instance, consider the following statements:

cout << iteml << ***" << cl << my_object << 22;

cin >> int_var >> float_var >> my_object;
The first statement outputs objects of different types (both the standard and user defined) and the
second statement reads data of different types.

The classes istream, ostream, and iostream, which are designed exclusively to manage the
console device, are declared in the header file iostream.h. The actions performed by these classes
related to console device management are described below:

Chapter 17: Steams Computation with Console 635

jos class: It provides operations common to both input and output. It contains a pointer to a buffer
object (streambuf). It has constants and member functions that are essential for handling formatted
input and output operations.

The classes derived from the ios class (istream, ostream iostream) perform specialized
input-output operations with high-level formatting:
« istream (input stream) does formatted input.
+ ostream (output stream) does formatted output.
+ iostream (input/output stream) does formatted input and output.

The pointer st reambuf in the ios class provides an abstraction for communicating to a physical
device and classes derived from it deal with files, memory, etc. The class, ios communicates to a
streambuf, which maintains information on the state of the streambuf (good, bad, eof, etc.), and main-
tains flags used by the istream and ostream.

igtrean class: It is a derived class of ios and hence inherits the properties of ios. It defines input
functions such as get (), getline (), and read (). In addition, it has an overloaded member
function, stream extraction operator >>, 10 read data from a standard input device to the memory items.

ostrean class: It is a derived class of ios, and hence, inherits the properties of ios. It defines
output functions such as put () and write (). In addition, it has an overloaded member function,
stream insertion operator <<, to write data from memory items to a standard output device.

jostrean class: It is derived from multiple base classes, istream and ostream, which are in turn
inherited from the class ios. It provides facility for handling both input and output streams, and sup-
ports all the operalions_provided by istream and ostream classes.

Theckmscsistreameithassign,ostream_withassign,and iostream_withassign
add the assignment operators to their parent classes.

17.4 Unformatted I/O Operations

The most commonly used objects throughout all C++ programs are cin and cout. They are pre-
defined in the header file, iostream.h, which supports the input and output of data of various types.
This is achieved by overloading the operators << and >> to recognize all the basic data types. The
input or extraction operator is overloaded in the istream class and output or insertion operator is
overloaded in the ostrean class.

put () and get () Functions

The stream classes of C++ support two member functions, get () and put (). The function get () is
a member function of the input stream class istream and is used to read a single character from the
input device. The functionput () is a member function of the output stream class ostreamand is used
to write a single character to the output device. The function get () has two versions with the follow-
ing prototypes: ,

void get(char &)i

int get(void);
Both the functions can fetch a white-space character including the blank space, tab, and newline
character. It is well known that, the member functions are invoked by their objects using dot operators.
Hence, these two functions can be used to perform input operation cither by using the predefined

636 Mastering C++

object, cin or an user defined object of the ist reamclass. The program get . cpp illustrates the use
of get () function to read a line (until carriage return key is pressed).

// get.cpp: Read characters using get () of istream
#include <iostream.h>
void main ()
{
char c;
cin.get(c);
while(c !'= '\n')
{
cout << c;
cin.get(¢); // reads a character
// replace the above statement by cin >> ¢; and see the output
}
}

Bun

Hello World

Hello World

In main(), the statement
cin.get(c);
invokes the member function get () of the object cin of the ist ream class. It reads a character into
the variable ¢ from the standard input device. If this statement is replaced by the statement,
cin >> ¢;
it will not work as desired, since the operator >> will skip blanks and newline characters. Another
version of get () can also be used in the above program as follows:
€ = cin.get();
It reads a single character and returns the same.

The function put (), which is a member function of the output stream class ostream prints a
character representation of the input parameter. For instance, the statement,
cout.put('R');
prints the character R,and the statement
cout.put(c);
prints the contents of the character variable c. The input parameter can also be a numeric constant and
hence, the statement

cout.put(65);

prints the character A (65 is a ASCII code of character A). The programput . cpp prints the ASCII table
(since put () considers input parameter as a ASCII code of a character to be printed.)

// put.epp: prints ASCII table using put() function
#include <iostream.h>
void main()
{
char c;
for(int i = 0; i < 255; ji++)

{

Chapter 17: Steams Computation with Console . 637

if(i == 26)
continue;
cout << i << " *;
cout.put(i); // change to cout << i; and see the output difference
cout << endl;

}

Run
[prints ASCII code and its character representation]

In main (), the statement
cout.put(i);

prints a character represented by the ASCII code whose value is passed as an input argument through
the variable 1.

getline () and write() Functions

The C++ stream classes support line-oriented functions, getline () and write () to perform input
and output operations. The getline () function reads a whole line of text that ends with new line or
until the maximum limit is reached. Consider the program spacel . cpp for reading an input string
having a blank space in between.

// spacel.cpp: the effect of white-space characters on the >> operacor
#include <iostream.h>
#include <iomanip.h>
void main()
{
char test[40];
cout << "Enter string: *;
cin >> test;
cout << "Output string: ";
cout << test;

}

Bun
Enter string;ﬁgilgjugig
Output string: Hello

In main (), the statement

cin >> test;

reads a string until it encounters a white space. If the input to the above program is "Hello World",
the output is going to be just "Hello". The reason being the operator >> considers all white-space
characters in the input stream as delimiters. To remedy this, use the member function getline () of
the cin object's class as shown in the program space2.cpp.

// space2.cpp: the effect of white-space characters on the >> operator
#include <iostream.h>

#include <iomanip.h>

void main()

{

638 Mastering C++

char test[40];

cout << "Enter string: ";
cin.getline(test, 40);
cout << "Output string: ";
cout << test;

}

Run

Enter string: Hello World
Output string: Hello World

In main (), the statement
cin.getline(test, 40);

reads a string until it encounters the new line character or maximum number of characters (40). Now, an
input of “Hello World” will produce the output as desired. The istream: : get1line member func-.
tion has the following versions:

istream& getline(signed char*, int len, char = '\n');

istream& getline(unsigned char*, int len, char = *‘\n');
They operate in the following ways:

« extracts character up to the delimiter

« stores the characters in the buffer

« removes the delimiter from the input stream

« does not place the delimiter into the buffer

+ maximum number of characters extracted is 1en-1

The terminator character can be any character. The terminator character is read but not saved into a
buffer; instead, it is replaced by the null character.

The prototype of write () functions is:
ostream: :write(char * buffer, int size);

It displays size (second parameter) number of characters from the input buffer. The display does not
stop even when the NULL character is encountered; If the length of the buffer is less than the indicated
size, it displays beyond the bounds of buffer. Therefore, it is the responsibility of the user to make sure
that the size does not exceed the length of the string. The program stand. cpp illustrates the use of
write in string processing.

// stand.cpp: display stand of "Object Computing with C++*";
#include <iostream.h>
#include <string.h>
void main()
{
char *stringl = "Object-Computing"”;
char *string2 = " with C++";
int i;
int lenl = strlen(stringl);
int len2= strlen(string2):
for{(i =1; 1 < lenl; i++)
{
cout.write(stringl, i);
cout << endl;

Chapter 17: Steams Computation with Console

}
for(i = lenl; i > 0; i--.)
{
cout.write(stringl, i);
cout << endl;
}
// print both the string
cout.write(stringl, lenl);
cout.write(string2, len2);
cout << endl;
// above two write() can be replaced below single statement
cout.write(stringl, leni).write(string2, len2);
cout << endl;
cout.write{ stringl, 6);
}
Run
(o}
Ob
Obj
Obje
Objec
Object
Object-
Object-C
Object-Co
Object-Com
Object-Comp
Object-Compu
Object-Comput
Object-Computi
Object-Computin
Object-Computing
Object-Computin
Object-Computi
Object-Comput
Object-Compu
Object-Comp
Object-Com
Object-Co
Object-C
Object-
Object
Objec
Obje
Obj
Ob
[0}
Object-Computing with C++
Object-Computing with C++
Object

640 Mastering C++

In' main (), the last statement
cout.write(stringl, 6);
indicates to display six characters from the string, stringl even though the input string has more
characters than the number of characters requested to be displayed. The two statements,
cout.write(stringl, lenl);
cout.write(string2, len2);
can be replaced by the single statement,
cout.write(stringl, lenl).write(string2, len2);
The dot operator with the predefined object cout indicates that the functionwri te is amember of the

class ostream. The invocation of write () function returns the object of type ostream which
again invokes the write () function.

17.5 Formatted Console I/O Operations

Most programs need to output data in various styles. A common requirement is to reserve an area of the
screen for a field, without knowing the number of characters the data of that field will occupy. To do this,
there must be a provision for alignment of fields to left or ri ght, or padded with some characters. C++
supports a wide variety of features to perform input or output in different formats. They include the
following:

¢ 10s stream class member functions and flags

+ Standard manipulators

¢ User-defined manipulators

ios Class Functions and Flags

The stream class, ios contains a large number of member functions to assist in formatting the output
in a number of ways. The most important among these functions are shown in Table 17.1.

Function Task Performed

width () S_pecifi;s the required number of fields to be used while
displaying the output value.

precision() | Specifies the number of digits to be displayed after the
decimal point.

£i11¢) Specifies a character to be used to fill the unused area

of a field. By default, fills blank space character.
setf() Sets format flag that control the form of output display
unsetf () Clears the specified flag

Table 17.1: ios class member functions

Defining Display Field Width
The functionwidth () is amember function of the i os class and is used to define the width of the field
to be used while displaying the output value. It must be accessed using objects of the ios class

Chapter 17: Steams Computation with Console ... - 641

(commonly accessed using cout object). It has the following two forms:

int width();

int width(int w);
where w is the field width i.e., number of columns to be used for displaying output. The first form of
width () returns the current width setting whereas, the second form width (int) sets the width to
the specified integer value and returns the previous width. It specifies field width for the item, which is
displayed first immediately after the setting. After displaying an item, it will revert to the default width.
For instance, the statements

cout.width(4);

cout << 20 << 123;

produce the following output:

The first value is printed in right-justified form in four columns. The nextitem is printed immediately after
first item without any separation; width (4) is then reverted to the default value, which prints in left-
justified form with default size. It can be overcome by explicitly setting width of every item with each
cout statement as follows:

cout.width(4);

cout << 20;

cout.width({ 4);

cout << 123;

These statements produce the following output.

2|0 112143

It should be noted that field width should be specified for each item independently if a width other
than the default is desired for output. If the field width specified is smaller than the required width to
display items, the field is expanded to the required space without truncation. For instance,

cout.width(2):
cout << 2000;

These statements produce the following output:

21070 0

without truncating eventhough width is specified as two. The program student . cpp illustrates the
use of width function in formatting the displayed output.

// student.cpp: printing student details in the form of table
#include <iostream.h>
const int MAX_MARKS = 600; // maximum marks
class student
{
private:
char name(11]; // name of a student

642 Mastering C++

int marks;
public:
void read();
void show();
}i
void student: :read()
{
cout << "Enter Name:
cin >> name;
cout <<
cin >> marks;
}
void student: :show()
{
cout.width(10);
cout << name;
cout.width{ 6);
cout << marks;
cout.width(10);
cout
}
void main()
{
int i, count;
student *s;

<< int(float (marks) /MAX_MARKS * 100);

// marks scored by a student

" .
7

"Enter Marks Secured: *;

// percentage

// pointers to objects

cout << "How many students ? *;

cin >> count;
s =
for(i =
{

cout <<

s[i].read();
}
cout
cout
cout
cout
cout
cout
cout
cout.
cout
for(i =

€

.width(3);
<< "R#";
.width(10);
<< *Student";
.width(6);
<< “Marks*;
width(15);

0;

cout.width(3);
cout << i+1l;
s[i].show();
cout << endl;

new student [count];
0; i < count;

*Enter Student * << i+l <<

<< "Student Report...

// array of objects, student s[count])
i++)

* details.." << endl;

* << endl;

<< "Percentage" << endl;
i < count;

i++)

// roll_no

Chapter 17: Steams Computation with Console 643

Run

How many students ? 3
Enter Student 1 details..
Enter Name: Tejaswi
Enter Marks Secured: 450
Enter Student 2 details..
Enter Name: Rajkumar-
Enter Marks Secured: 533
Enter Student 3 details..
Enter Name: Bindu

Enter Marks Secured: 429
Student Report...

R# student Marks Percentage
1 Tejaswi 450 75
2 Rajkumar 525 87
3 Bindu 429 71

Setting Precision

The function precision () is a member of the ios class and is used to specify the number of digits
to be displayed after the decimal point while printing a floating-point number. By default, the precision
size is six. This function must be accessed using objects of the ios class (commonly accessed using
cout object). It has the following two forms:

int precision(); // returns current precision

int precision(int 4);
where d is the number of digits to the right of the decimal point. It sets the floating-point precision and
returns the previous setting. For example, the statements

cout.precision(2);

cout << 2.23 << endl;

cout << 5.169 << endl;

cout << 3.5055 << endl;

cout << 4.003 << endl;

will produce the following output:

2.23 (perfect fit)

5.17 (rounded)

3.51 (rounded)

4 (no trailing zeros, truncated)

After displaying an item, the user defined precision will not revert to the default value. Different
values can be processed with different precision by having multiple precision statements. For instance,

cout.precision(1);

cout << 2.23 << endl;

cout.precision(3);

cout << 5.1691 << endl;
will produce the following output:

2.2 (truncated)
5.169 (truncated)

Consider the statements:

cout.precision(3);

644 Mastering C++

cout << 12.53 << 20.5 << 2;
which produce the following output all packed together:

11 27. 51 3 2 0]. 5| 2

It can be overcome by the combined use of width () and precision to control the output format. The
statements

cout.precision{ 2);
cout.width(6);
cout << 12.53;
cout.width(6);
cout <« 20.5;
cout.width(6);
cout << 2;

will produce the following output:

12 . 53 210 . 5 2

It must be noted from the above output that the unused width is filled with blank characters. Unlike
width(), the precision() must be reset for each data item being output if new precision is
desired.

Filling and Padding

The function £111 () is amember of the ios class and is used to specify the character to be displayed
in the unused portion of the display width. By default, blank character is displayed in the unused
portion if the display width is larger than that required by the value. It has the following two forms:
int £i11¢(); // returns current fill character
int £ill(ch);
where ch is the character to be filled in the unused portion. For example, the statements
cout.fill(**’);
cout.precision(2);
cout.width(6);
cout << 12.53;
cout.width(6 };
cout << 20.5;
cout.width(6);
cout << 2;

will produce the following output:

* 1] 2 . 513 * * 210 . 5} = * * * x| 2

It is seen from the above output that the unused width is filled with asterisk character as set by the
statement cout.fill('*');. Similar to precision(), the effect of £i11 () continues unless
explicitly modified by the other £i111 () statement. It is illustrated by the program salary. cpp.

Chapter 17: Steams Computation with Console 645

// salary.cpp: £illing and padding

#include <iostream.h>

void main ()

{
char *desig[5] = { "CEO", "Manager", "Receptionist", "Clerk", "Peon" };
int salary[5] = { 10200, 5200, 2950, 950, 750 };
cout << "Salary Structure Based on Designation"” << endl;
Cout €< "—m-mmmmm e e e m—— e ——— e — " << endl;
cout.width(15);
cout << "Designation";
cout << " ",
cout.width(15);
cout << "Salary (in Rs.)" << endl;

COUL << "—--mmmmso oo —m—————— oo " << endl;
for(int i = 0; i < 5; i++)
{

cout.fill('.’);

cout.width(15);

cout << desigflil;

cout << " "
cout.£ill('*');

cout .width(15);

cout << salaryl[i] << endl;

BRun

Designation Salary (in Rs.)
............ CEO *rrkxkkxxxxx]10200
........ Manager Frx KX KX XX XXG200
...Receptionist KEXKKXXXAAXDG50
.......... Clerk kkkkkkkk kXX *Q5()
........... Peon Kxkkk kK XK AXXXTE(

Note that such a form of output representation is extensively used by financial institutions to
represent money transactions so that no one can modify the amount (money representation) easily.

Formatting with Flags and Bit-fields

From the earlier examples, it can be noted that, when the functionwidth () is used, results are printed
in the right-justified form (which is not a usual practice). C++ provides a mechanism to set the printing
of results in the left-justified form, scientific notation etc. The member function of the ios class,
setf () (setf stands for set flags) is used to set flags and bit-fields that control the output. It has the
following two forms:

long setf(long _setbits, long _field);

long setf(long _setbits);
where _setbits is one of the flags defined in the class ios. It specifies the format action required for

646 Mastering C++

the output, and _field specifies the group to which the formatting flag belongs. Both the forms
return the previous settings. The flags, bit-fields when set with set £ () and their actions is shown in
Table 17.2. There are three bit-fields and each group has format flags that are mutually exclusive. For
instance,

cout.setf(ios::right, ios::adjustfield);

cout.setf(ios::oct, ios::basefield);

cout.setf(ios::scientific, ios::floatfield);

Note that the flag argument (first) should be one of the group (bit-field) of the second argument.

Flags value Bit field Effect produced

ios::left ios::adjustfield | Leftjustified output

ios::right ios::adjustfield | Right-adjust output

ios::internal ios::adjustfield Padding occurs between the sign
or base indicator and the number,
when the number output fails to fill
the full width of the field.

ios: :dec ios: :basefield Decimal conversion

ios::oct ios::basefield Octal conversion

ios::hex ios: :basefield Hexadecimal conversion

ios::scientific ios::floatfield Use exponential floating notation

ios::fixed ios::floatfield Use ordinary floating notation

Table 17.2: Flags and bit fields for setf function

Consider the following statements:
cout.setf(ios::left, ios::adjustfield);
cout.fill(**');
cout.precision(2);
cout.width(6);
cout << 12.53;
cout.width(6);
cout << 20.5;
cout.width(6);
cout << 2;

The output produced by the above statements is:

1 2 . 5 3 * 2 0 . 5 * * 2 * * * * *

The statements
cout.setf(ios::internal, ios::adjustfield);
cout.fill('*');
cout.precision(3) -

Chapter 17: Steams Computation with Console 647

cout.width(10);
cout << -420.53;

will produce the following output:

-4 * * 4] 2 0 . 513

If the last statement is replaced by,
cout << -420.534;
the following output will be generated:

-« |*|lal2]lo0o]|.]5s5}|3]4

Note that the sign is left justified and the value is right justified. The space between them is filled with
stars.

Displaying Trailing Zeros and Plus Sign
Streams support the feature of avoiding truncation of the trailing zeros in the output. For instance, the
following statements:

cout << 20.55 << endl;
cout << 55.40 << endl;
cout << 10.00 << endl;

produce the output as shown below:

2 0 . 515
5 5 4
1 0

It can be observed that the trailing zeros in second and third output have been truncated. The ios class
has the flag, showpoint which when set, prints the trailing zeros also. It is set by the following statement
cout.setf(ios::showpoint);
which causes the cout to display the trailing decimal point and zero. The following statements
cout.setf(ios::showpoint);
cout.precision(2);
cout << 20.55.<< endl;
cout << 55.40 << endl;
cout << 10.00 << endl;

would produce the output as shown below:

2 0 . 515

648 Mastering C++

Similarly, the plus symbol can be printed using the following statement:
cout.setf(ios::showpos);

For example, the statements
cout.setf(ios::showpos); // positive sign
cout.setf(ios::showpoint); // trailing zero and point
cout.setf(ios::internal, ios::adjustfield);
cout.precision(3);
cout.width(10);
cout << 420.53;

will produce the following output:

+ 4 1210 . 51340

Table 17.3 presents summary of flags that do not have bit fields for the set £ function.

Flag's value Effect produced
ios: :showbase Use base indicator on output
ios: :showpos Add ‘+ to positive integers

ios: :showpoint | Include decimal point and trailing zeros in output

ios: :uppercase Upper-case hex output

ios::skipws Skips white-space characters on input.
ios: :unitbuf Flush after insertion. (i.e., use a buffer of size 1)
ios::stdio Flush stdout and stderr after insertion

Table 17.3: Flags that do not have bit fields for setf function

The flag setting ios::skipws is set by default. The white-space characters are space, tab,
newline, carriage return, form feed and vertical tab. While performing formatted input (with the >>
operator), an input stream (such as cin) behaves as if these characters are not present in the input, Use
this flag with the resetiosflags manipulator, to prevent skipping white-space characters.

The flags can be reset by using the ios: : unset f member function. It has the following syntax:
long unsetf (long) ;
and is invoked as follows:
cout.unsetf(ios::showpos);

It clears the bits corresponding to show positive-sign symbol (when number displayed is positive) and
returns the previous settings.

17.6 Manipulators

The C++ streams package makes use of the notion of stream manipulators, principally as a means of
manipulating the formatting state associated with a stream. These manipulators are functions that can
be used with the << or the >> operator to alter the behavior of any stream class instances including the

Chapter 17: Steams Computation with Console 619

cin and cout. C++ has manipulators which produce output and consume input to extend stream IO
formatting. Such manipulators can be especially useful for simple parsing of stream inputs. Manipula-
tors are broadly categorized as producers and consumers. A producer manipulator is one which gener-
ates output on an output stream, for example, endl. Similarly, a consumer manipulator consumes input
from an input stream, for example, ws.

Manipulators are special functions that are specifically designed to modify the working of a stream.
They can be embedded in the I/O statements to modify the form parameters of a stream. All the pre-
defined manipulators are defined in the header file iomanip . h. Manipulators are more convenient to
use than their counterparts, defined by the ios class. There can be more than one manipulator in a
statement and they can be chained as shown in the following statements:

cout << manipl << manip2 << manip2 << item;
cout << manipl << iteml << item2 << manip2 << item3;

This kind of chaining of manipulators is useful in displaying several columns of output. Manipula-

tors are categorized into the following two types:

« Non-Parameterized Manipulators
+ Parameterized Manipulators

As mentioned before, cout and cin work elegantly with any basic type. They do not require
specification of type of variables while performing I/O. The format string of C’s I/O function requires
display control information such as width, number system, etc., apart from the variable types in the
format string. The program hex . c clarifies these concepts.

/* hex.c: read hexadecimal number and display the same in decimal */

#include <stdio.h>

void main()

{
int num;
printf("Enter any hexadecimal number: ");
scanf("$x", &num); /*Input in hexadecimal*/
/*output i in decimal,in a field of width 6*/
printf("The input number in decimal = *);
printf("$6d", num);

}

Run

Enter any hexadecimal number: ab
The input number in decimal = 171

This kind of code is often useful. The question arises—How can this be done with cin and cout ?
The answer lies in the manipulators. For example, the above lines of code that used scanf and
printf can be rewritten as listed in the program hex. cpp.

// hex.cpp: read hexadecimal number and display the same in decimal
#include <iostream.h>
#include <iomanip.h> // for manipulators
void main()
{
int num;
cout << "Enter any hexadecimal number: ";

~30 Mastering C++

cin >> hex >> num; // Input in hexadecimal
// output i in decimal,in a field of width 6
cout << "The input number in decimal = ";
cout << setw(6) << num;

}
Run

Enter any hexadecimal number: ab
The input number in decimal = 171

The manipulator hex sets the conversion base for cin to 16. So cin interprets the input characters
as digits of a hexadecimal number. The manipulator setw sets the field width as 6 for cout. Thus, the
input to the above program (ab) is converted into decimal and displayed (16*a+b = 16*10+11=171).

The C++ iostream package contains a rather small handful of predefined producer consumer
manipulators, the only instance of consumer being the white-space eater, for example, ws. Other pre-
defined manipulators set stream state variables which influence processing of input and output, for
example. hex. The implementation of the 1 os class as well as the implementation of the insertion and
extraction operators correspond to the data type of an item they process. The list of non-parameterized
manipulators and parameterized manipulator functions are shown in Table 17.4 and 17.5 respectively.
Each one of these can be used with either the << or the >> operator without incurring any compile-time
errors. But some of them affect only output streams such as cout, and some others, only input streams
such as cin. Unless otherwise mentioned, these manipulators affect both types of streams. The first six
manipulators - dec,hex, oct,ws,endl, and ends are defined in iostream.h itself and the
rest are in the header file iomanip.h.

Manipulator Action Performed
dec Sets the conversion base to 10
hex Sets the conversion base to 16
oct Sets the conversion base to 8
ws Extracts white-space characters from an

input stream. Characters in the stream will

be extracted until a non-white-space

character is found, or an error (such as EOF)
occurs. As expected, it affects only input streams.

endl Outputs a newline and flushes stream
Affects only output streams “\n”
ends Outputs a NULL character (‘\0’)
Affects only output streams
flush Flushes the stream. Affects only output streams

Table 17.4: C++’s predefined non-parameterized manipulators

